叉乘/点乘/内积/外积
角标效果markdown叉乘a×ba \times ba×ba \times b点乘a⋅ba\cdot ba⋅ba\cdot b内积⟨x,b⟩\langle x,b \rangle⟨x,b⟩\langle x,b \rangle外积a⊗ba \otimes ba⊗ba \otimes b计算、证明过程常用符号
符号名称效果markdown推断 ⟹ \implies⟹\implies推导⇒\Rightarrow⇒\Rightarrow公式排版对齐
s=12(a+b)h=12(8+12)⋅6=10⋅6=60\begin{aligned}
s&=\frac{1}{2}(a+b)h\\
&=\frac{1}{2}(8+12)·6\\
&=10·6=60
\end{aligned}s=21(a+b)h=21(8+12)⋅6=10⋅6=60
markdown代码是:
\begin{aligned}
s&=\frac{1}{2}(a+b)h\\
&=\frac{1}{2}(8+12)·6\\
&=10·6=60
\end{aligned}
高等数学(更新中)
符号名称效果markdown向量AB⃗\vec{AB}AB\vec{AB}向量AB→\overrightarrow{AB}AB\overrightarrow{AB}对于任何…∀\forall∀\forall属于∈\in∈in存在∃\exists∃\exists开方111+ab\sqrt{111+ab}111+ab\sqrt{111+ab}分式9723\frac{97}{23}2397\frac{97}{23}DeltaΔ\DeltaΔ\DeltaHamilton算子∇\nabla∇\nabla正相关于∝\varpropto∝\varpropto大于等于≥\geq≥\geq大于等于≥\ge≥\ge小于等于≤\le≤\le小于等于≤\leq≤\leq不等于≠\neq=\neq约等于≈\approx≈\approx恒等于≡\equiv≡\equiv垂直于⊥\perp⊥\perp一重积分∫abf(x)dx\int_{a}^{b}f(x)dx∫abf(x)dx\int_{a}^{b}f(x)dx二重积分∬Ωf(x,y)dS\iint_\Omega f(x,y)dS∬Ωf(x,y)dS\iint_\Omega f(x,y)dS三重积分∭Ωf(x,y,z)dV\iiint_\Omega f(x,y,z)dV∭Ωf(x,y,z)dViiint_\Omega f(x,y,z)dV曲线积分∮f(x,y)dl\oint f(x,y)dl∮f(x,y)dl\oint f(x,y)dl正整数垂直于∣\vert∣交集∩\cap∩\capBig intersection⋂\bigcap⋂\bigcap并集(union)∪\cup∪\cup大集合(big union)⋃\bigcup⋃\bigcup空集∅\varnothing∅\varnothing子集⊆\subseteq⊆\subseteq真子集⊂\subset⊂subset同或⊙\odot⊙\odot同或⨀\bigodot⨀\bigodot异或A⊕BA\oplus BA⊕BA\oplus B异或A⨁BA\bigoplus BA⨁BA\bigoplus B异或+◯\textcircled{+}+◯\textcircled{+}非零实数带圆圈的数字9◯\textcircled{9}9◯\textcircled{9}求和∑k=1s\sum_{k=1}^{s}∑k=1s\sum_{k=1}^{s}求和Σk=1s\Sigma_{k=1}^{s}Σk=1s\Sigma_{k=1}^{s}正比于∝\propto∝\propto正负±\pm±\pm小括号(ab)\left ( \frac{a}{b} \right )(ba)\left ( \frac{a}{b} \right )中括号[ab]\left[ \frac{a}{b} \right][ba]\left[ \frac{a}{b} \right]尖括号⟨ab⟩\left \langle \frac{a}{b} \right \rangle⟨ba⟩\left \langle \frac{a}{b} \right \rangle大括号{ab}\left\{ \frac{a}{b} \right\}{ba}\left{ \frac{a}{b} \right}上括号1+2+⋯+100⏞\overbrace{ 1+2+\cdots+100 }1+2+⋯+100\overbrace{ 1+2+\cdots+100 }下括号a+b+⋯+z⏟\underbrace{ a+b+\cdots+z }a+b+⋯+z\underbrace{ a+b+\cdots+z }相似于∽\backsim∽\backsim根号3\sqrt{3}3\sqrt{3}n次方根3n\sqrt[n]{3}n3\sqrt[n]{3}全等≅\cong≅\cong乘积∏i=1Nxi\prod_{i=1}^N x_i∏i=1Nxi\prod_{i=1}^N x_i上积∐i=1Nxi\coprod_{i=1}^N x_i∐i=1Nxi\coprod_{i=1}^N x_i分数110=0.1\tfrac{1}{10} = 0.1101=0.1\tfrac{1}{10} = 0.1小分数110=0.1\tfrac{1}{10} = 0.1101=0.1\tfrac{1}{10} = 0.1大型分数kk+9=0.1\dfrac{k}{k+9} = 0.1k+9k=0.1\dfrac{k}{k+9} = 0.1大小型分数嵌套12[1−(12)n]1−12\dfrac{ \tfrac{1}{2}[1-(\tfrac{1}{2})^n] }{ 1-\tfrac{1}{2} }1−2121[1−(21)n]\dfrac{ \tfrac{1}{2}[1-(\tfrac{1}{2})^n] }{ 1-\tfrac{1}{2} }合取∧\wedge∧\wedge析取∨\vee∨\vee否定¬\neg¬\neg双条件↔\leftrightarrow↔\leftrightarrow等价⇔\Leftrightarrow⇔\Leftrightarrow上弧AB⌢\overset{\frown} {AB}AB⌢\overset{\frown} {AB}上划线hij‾\overline{h i j}hij\overline{h i j}下划线klm‾\underline{k l m}klm\underline{k l m}数组
abS001011101110\begin{array}{|c|c||c|}
a & b & S \\
\hline
0&0&1\\
0&1&1\\
1&0&1\\
1&1&0
\end{array}a0011b0101S1110
markdown
\begin{array}{|c|c||c|}
a & b & S \
\hline
0&0&1\
0&1&1\
1&0&1\
1&1&0
\end{array}
和差化积
公式markdownsinα+sinβ=2sinα+β2cosα–β2\sin \alpha + \sin \beta =2 \sin \frac{\alpha + \beta}{2}\cos \frac{\alpha – \beta}{2}sinα+sinβ=2sin2α+βcos2α–β\sin \alpha + \sin \beta =2 \sin \frac{\alpha + \beta}{2}\cos \frac{\alpha – \beta}{2}sinα–sinβ=2cosα+β2sinα–β2\sin \alpha – \sin \beta =2 \cos \frac{\alpha + \beta}{2}\sin \frac{\alpha – \beta}{2}sinα–sinβ=2cos2α+βsin2α–β\sin \alpha – \sin \beta =2 \cos \frac{\alpha + \beta}{2}\sin \frac{\alpha – \beta}{2}cosα+cosβ=2cosα+β2cosα–β2\cos \alpha + \cos \beta =2 \cos \frac{\alpha + \beta}{2}\cos \frac{\alpha – \beta}{2}cosα+cosβ=2cos2α+βcos2α–β\cos \alpha + \cos \beta =2 \cos \frac{\alpha + \beta}{2}\cos \frac{\alpha – \beta}{2}cosα–cosβ=−2sinα+β2sinα–β2\cos \alpha – \cos \beta =-2\sin \frac{\alpha + \beta}{2}\sin \frac{\alpha – \beta}{2}cosα–cosβ=−2sin2α+βsin2α–β\cos \alpha – \cos \beta =-2\sin \frac{\alpha + \beta}{2}\sin \frac{\alpha – \beta}{2}物理公式
公式markdownF⃗=ma⃗\vec{F}=m\vec{a}F=ma\vec{F}=m\vec{a}e=mc2e=mc^2e=mc2e=mc^2F⃗=mdv⃗dt+v⃗dmdt\vec{F}=m\frac{d\vec{v}}{dt}+\vec{v}\frac{dm}{dt}F=mdtdv+vdtdm\vec{F}=m\frac{d\vec{v}}{dt}+\vec{v}\frac{dm}{dt}∮F⃗⋅ds⃗=0\oint\vec{F}\cdot d\vec{s}=0∮F⋅ds=0\oint\vec{F}\cdot d\vec{s}=0F⃗g=−Fm1m2r2e⃗r\vec{F}_g=-F\frac{m_1 m_2}{r^2}\vec{e}_rFg=−Fr2m1m2er\vec{F}_g=-F\frac{m_1 m_2}{r^2}\vec{e}_rR⃗=m1r⃗1+m2r⃗2m1+m2\vec{R}=\frac{m_1\vec{r}_1 + m_2\vec{r}_2}{m_1+m_2}R=m1+m2m1r1+m2r2\vec{R}=\frac{m_1\vec{r}_1 + m_2\vec{r}_2}{m_1+m_2}ψ(t)=ψ^ei(ωt ± θ)\psi(t)=\hat{\psi}e^{i(\omega t\,\pm\,\theta)}ψ(t)=ψ^ei(ωt±θ)\psi(t)=\hat{\psi}e^{i(\omega t,\pm,\theta)}∑iψi^cos(αi±ωt)\sum_i\hat{\psi_i}cos(\alpha_i\pm\omega t)∑iψi^cos(αi±ωt)\sum_i\hat{\psi_i}cos(\alpha_i\pm\omega t)线性代数
符号名称效果markdown合同于立方空间R3\mathbb{R}^3R3mathbb{R}^3行列变换r2−r1r3−r1r4−r1\begin{array}{c}r_2-r_1\\r_3-r_1\\\hline r_4-r_1\end{array}r2−r1r3−r1r4−r1\begin{array}{c}r_2-r_1\r_3-r_1\\hline r_4-r_1\end{array}矩阵
λA=Aλ=(λa11λa12⋯λa1nλa21λa22⋯λa2n⋮⋮⋮λam1λan2⋯λamn)\lambda\boldsymbol{A}=\boldsymbol{A}\lambda=\begin{pmatrix}\lambda a_{11}&\lambda a_{12}&\cdots&\lambda a_{1n}\\\lambda a_{21}&\lambda a_{22}&\cdots&\lambda a_{2n}\\\vdots&\vdots&&\vdots\\\lambda a_{_{m1}}&\lambda a_{_{n2}}&\cdots&\lambda a_{_{mn}}\end{pmatrix}λA=Aλ=λa11λa21⋮λam1λa12λa22⋮λan2⋯⋯⋯λa1nλa2n⋮λamn
markdown
\lambda\boldsymbol{A}=\boldsymbol{A}\lambda=\begin{pmatrix}\lambda a_{11}&\lambda a_{12}&\cdots&\lambda a_{1n}\\lambda a_{21}&\lambda a_{22}&\cdots&\lambda a_{2n}\\vdots&\vdots&&\vdots\\lambda a_{{m1}}&\lambda a{{n2}}&\cdots&\lambda a{_{mn}}\end{pmatrix}
行列式
D1=∣b11b12⋯b1nb21b22⋯b2n⋮⋮⋮bn1bn2⋯bnn∣\left.D_1=\left|\begin{array}{cccc}b_{11}&b_{12}&\cdots&b_{1n}\\b_{21}&b_{22}&\cdots&b_{2n}\\\vdots&\vdots&&\vdots\\b_{n1}&b_{n2}&\cdots&b_{nn}\end{array}\right.\right|D1=b11b21⋮bn1b12b22⋮bn2⋯⋯⋯b1nb2n⋮bnn
markdown
$\left.D_1=\left|\begin{array}{cccc}b_{11}&b_{12}&\cdots&b_{1n}\\b_{21}&b_{22}&\cdots&b_{2n}\\\vdots&\vdots&&\vdots\\b_{n1}&b_{n2}&\cdots&b_{nn}\end{array}\right.\right|$
下三角行列式
∣q110⋮⋱qn1⋯qnn∣\left.\left|\begin{matrix}q_{_11}&&0\\\vdots&\ddots&\\q_{_n1}&\cdots&q_{_{nn}}\end{matrix}\right.\right|q11⋮qn1⋱⋯0qnn
markdown代码
\left.\left|\begin{matrix}q_{11}&&0\\vdots&\ddots&\q{n1}&\cdots&q{_{nn}}\end{matrix}\right.\right|
范德蒙德(Vandermonde)行列式
Dn=∣11⋯1x1x2⋯xnx12x22⋯xn2⋮⋮⋮x1n−1x2n−1⋯xnn−1∣\left.D_n=\left|\begin{array}{cccc}1&1&\cdots&1\\x_1&x_2&\cdots&x_n\\x_1^2&x_2^2&\cdots&x_n^2\\\vdots&\vdots&&\vdots\\x_1^{n-1}&x_2^{n-1}&\cdots&x_n^{n-1}\end{array}\right.\right|Dn=1x1x12⋮x1n−11x2x22⋮x2n−1⋯⋯⋯⋯1xnxn2⋮xnn−1
markdown
\left.D_n=\left|\begin{array}{cccc}1&1&\cdots&1\x_1&x_2&\cdots&x_n\x_12&x_22&\cdots&x_n2\\vdots&\vdots&&\vdots\x_1{n-1}&x_2{n-1}&\cdots&x_n{n-1}\end{array}\right.\right|
各种矩阵区别
矩阵类型效果markdownvmatrix∣xyzv∣\begin{vmatrix}x & y \\z & v\end{vmatrix}xzyv\begin{vmatrix}x & y \z & v\end{vmatrix}Vmatrix∥xyzv∥\begin{Vmatrix}x & y \\z & v\end{Vmatrix}xzyv\begin{Vmatrix}x & y \z & v\end{Vmatrix}bmatrix[0⋯0⋮⋱⋮0⋯0]\begin{bmatrix}0 & \cdots & 0 \\\vdots & \ddots & \vdots \\ 0 & \cdots & 0\end{bmatrix}0⋮0⋯⋱⋯0⋮0\begin{bmatrix}0 & \cdots & 0 \\vdots & \ddots & \vdots \ 0 & \cdots & 0\end{bmatrix}Bmatrix{xyzv}\begin{Bmatrix}x & y \\z & v\end{Bmatrix}{xzyv}\begin{Bmatrix}x & y \z & v\end{Bmatrix}pmatrix(xyzv)\begin{pmatrix}x & y \\z & v\end{pmatrix}(xzyv)\begin{pmatrix}x & y \z & v\end{pmatrix}smallmatrix(abcd)\bigl( \begin{smallmatrix}a&b\\c&d\end{smallmatrix} \bigr)(acbd)\bigl( \begin{smallmatrix}a&b\c&d\end{smallmatrix} \bigr)希腊字母表
https://blog.csdn.net/Krone_/article/details/99710062
markdown表格
|标题一|标题二|标题三|标题四|
|- |:---|---:|:---:|
|居中|居左|居右|居中|
|居中|居左|居右|居中|
|单元格内换行
换行|单元格内换行
换行|单元格内换行
换行|单元格内换行
换行|
效果如下
标题一标题二标题三标题四居中居左居右居中居中居左居右居中单元格内换行换行单元格内换行换行单元格内换行换行单元格内换行换行上波浪线:
向量的写法是\vec{AB}
示范
$\widetilde{\phi}$
ϕ~\widetilde{\phi}ϕ
带圆圈的数字:
⓪ ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ ⑪ ⑫ ⑬ ⑭ ⑮ ⑯ ⑰ ⑱ ⑲ ⑳ ㉑ ㉒ ㉓ ㉔ ㉕ ㉖ ㉗ ㉘ ㉙ ㉚ ㉛ ㉜ ㉝ ㉞ ㉟ ㊱ ㊲ ㊳ ㊴ ㊵ ㊶ ㊷ ㊸ ㊹ ㊺ ㊻ ㊼ ㊽ ㊾ ㊿
These are specifically sans-serif:
🄋 ➀ ➁ ➂ ➃ ➄ ➅ ➆ ➇ ➈ ➉
Black Circled Number
⓿ ❶ ❷ ❸ ❹ ❺ ❻ ❼ ❽ ❾ ❿⓫ ⓬ ⓭ ⓮ ⓯ ⓰ ⓱ ⓲ ⓳ ⓴
These are specifically sans-serif:
🄌 ➊ ➋ ➌ ➍ ➎ ➏ ➐ ➑ ➒ ➓
ON BLACK SQUARE
㉈ ㉉ ㉊ ㉋ ㉌ ㉍ ㉎ ㉏
Double-Circled Number
⓵ ⓶ ⓷ ⓸ ⓹ ⓺ ⓻ ⓼ ⓽ ⓾
Number with Period
🄀 ⒈ ⒉ ⒊ ⒋ ⒌ ⒍ ⒎ ⒏ ⒐ ⒑ ⒒ ⒓ ⒔ ⒕ ⒖ ⒗ ⒘ ⒙ ⒚ ⒛
Number with Parenthesis
⑴ ⑵ ⑶ ⑷ ⑸ ⑹ ⑺ ⑻ ⑼ ⑽ ⑾ ⑿ ⒀ ⒁ ⒂ ⒃ ⒄ ⒅ ⒆ ⒇
Chinese Circled Number
㊀ ㊁ ㊂ ㊃ ㊄ ㊅ ㊆ ㊇ ㊈ ㊉
ⓐⓑⓒⓓⓔⓕⓖⓗⓘⓙⓚⓛⓜⓝⓞⓟⓠⓡⓢⓣⓤⓥⓦⓧⓨⓩ⓪
ⒶⒷⒸⒹⒺⒻⒼⒽⒾⒿⓀⓁⓂⓃⓄⓅⓆⓇⓈⓉⓊⓋⓌⓍⓎⓏ
大括号(记得两边都加上$):
p=\left\{
\begin{aligned}
x & = & \cos(t) \\
y & = & \sin(t) \\
z & = & \frac xy
\end{aligned}
\right.
效果如下:
p={x=cos(t)y=sin(t)z=xy p=\left\{
\begin{aligned}
x & = & \cos(t) \\
y & = & \sin(t) \\
z & = & \frac xy
\end{aligned}
\right.p=⎩⎨⎧xyz===cos(t)sin(t)yx
分段函数对齐显示
f(x)={x2+2x+1,当 x<0 时3x+2,当 0≤x<1 时x+3,当 x≥1 时f(x) = \begin{cases}
x^2 + 2x + 1, & \text{当 } x < 0 \text{ 时} \\
3x + 2, & \text{当 } 0 \leq x < 1 \text{ 时} \\
x + 3, & \text{当 } x \geq 1 \text{ 时}
\end{cases}f(x)=⎩⎨⎧x2+2x+1,3x+2,x+3,当 x<0 时当 0≤x<1 时当 x≥1 时
markdown代码
$f(x) = \begin{cases}
x^2 + 2x + 1, & \text{当 } x < 0 \text{ 时} \\
3x + 2, & \text{当 } 0 \leq x < 1 \text{ 时} \\
x + 3, & \text{当 } x \geq 1 \text{ 时}
\end{cases}$
上划线:
\overline{X} X‾\overline{X}X
下划线:
\underline{X} X‾\underline{X}X
markdown中的表格以及表格中换行:
∣一个普通标题∣一个普通标题∣一个普通标题∣∣−−−−−−∣−−−−−−∣−−−−−−∣∣短文本∣中等文本∣稍微长
一点的文本∣∣稍微长一点的文本∣短文本∣中等文本∣| 一个普通标题 | 一个普通标题 | 一个普通标题 |
| ------ | ------ | ------ |
| 短文本 | 中等文本 | 稍微长
一点的文本 |
| 稍微长一点的文本 | 短文本 | 中等文本 |∣一个普通标题∣一个普通标题∣一个普通标题∣∣−−−−−−∣−−−−−−∣−−−−−−∣∣短文本∣中等文本∣稍微长
一点的文本∣∣稍微长一点的文本∣短文本∣中等文本∣
效果如下:
一个普通标题一个普通标题一个普通标题短文本中等文本稍微长一点的文本稍微长一点的文本短文本中等文本
矩阵中的三点
✓
⇔
下面是一个比较有意思的网站
https://tikzcd.yichuanshen.de/
这个是在线markdown编辑
http://www.mdeditor.com/
$\xRightarrow[easy]{就是这样子啦}$
⇒easy就是这样子啦\xRightarrow[easy]{就是这样子啦}就是这样子啦easy
$\xrightarrow[\text{world}]{\text{hello}}$
$\xRightarrow[\text{world}]{\text{hello}}$
$\xrightarrow[g(x)]{f(x)}$
$\xRightarrow[g(x)]{f(x)}$
→worldhello\xrightarrow[\text{world}]{\text{hello}}helloworld
⇒worldhello\xRightarrow[\text{world}]{\text{hello}}helloworld
→g(x)f(x)\xrightarrow[g(x)]{f(x)}f(x)g(x)
⇒g(x)f(x)\xRightarrow[g(x)]{f(x)}f(x)g(x)
← → ↑ ↓ ⟵ ⟶ ⇦ ⇨ ⇧ ⇩ ⬅ ( ⮕ ➡ ) ⬆ ⬇ 🡐 🡒 🡑 🡓
Double Points Arrows
↔ ↕ ↚ ↛ ↮ ⟷ ⬄ ⇳ ⬌ ⬍ 🡘 🡙
Oblique Arrows
↖ ↗ ↘ ↙ ⤡ ⤢ ⬁ ⬀ ⬂ ⬃ ⬉ ⬈ ⬊ ⬋ 🡔 🡕 🡖 🡗
Heavy Arrow, Compressed Arrow
🠹 🠸 🠻 🠺 🡄 🡆 🡅 🡇 🠼 🠾 🠽 🠿 🡀 🡂 🡁 🡃
Equilateral Triangle Arrowhead
🠐 🠒 🠑 🠓 🠔 🠖 🠕 🠗 🠘 🠚 🠙 🠛 🠜 🠞 🠝 🠟
Triangle Arrowhead
⭠ ⭢ ⭡ ⭣ ⭤ ⭥ ⭦ ⭧ ⭨ ⭩ 🠀 🠂 🠁 🠃 🠄 🠆 🠅 🠇 🠈 🠊 🠉 🠋 🠠 🠢 🠡 🠣 🠤 🠦 🠥 🠧 🠨 🠪 🠩 🠫 🠬 🠮 🠭 🠯 🠰 🠲 🠱 🠳
Barb Arrow
🡠 🡢 🡡 🡣 🡤 🡥 🡦 🡧 🡨 🡪 🡩 🡫 🡬 🡭 🡮 🡯 🡰 🡲 🡱 🡳 🡴 🡵 🡶 🡷 🡸 🡺 🡹 🡻 🡼 🡽 🡾 🡿 🢀 🢂 🢁 🢃 🢄 🢅 🢆 🢇
Circled Arrow
⮈ ⮊ ⮉ ⮋ ➲
Dart Arrow
⮜ ⮞ ⮝ ⮟ ⮘ ⮚ ⮙ ⮛ ➢ ➣ ➤
Dashed/Dotted Arrows
⭪ ⭬ ⭫ ⭭ ⇠ ⇢ ⇡ ⇣ ⤌ ⤍ ⤎ ⤏ ⬸ ⤑ ⬷ ⤐
Harpoon Arrows
↼ ⇀ ↽ ⇁ ↿ ↾ ⇃ ⇂ ⥊ ⥋ ⥌ ⥍ ⥎ ⥐ ⥑ ⥏ ⥒ ⥓ ⥖ ⥗ ⥔ ⥕ ⥘ ⥙ ⥚ ⥛ ⥞ ⥟ ⥜ ⥝ ⥠ ⥡ ⥢ ⥤ ⥣ ⥥ ⇋ ⇌ ⥦ ⥨ ⥧ ⥩ ⥪ ⥬ ⥫ ⥭ ⥮ ⥯
Paired Arrows
⮄ ⮆ ⮅ ⮇ ⇈ ⇊ ⇇ ⇉ ⇆ ⇄ ⇅ ⇵ ⮀ ⮂ ⮁ ⮃ ⭾ ⭿
Double/Triple/Quadruple Lines Arrows
⇐ ⇒ ⇑ ⇓ ⇔ ⇕ ⇖ ⇗ ⇘ ⇙ ⇍ ⇏ ⇎ ⟸ ⟹ ⟺ ⤂ ⤃ ⤄ ⤆ ⤇ ⬱ ⇶ ⇚ ⇛ ⤊ ⤋ ⭅ ⭆ ⟰ ⟱
Arrow to/from Bar
⭰ ⭲ ⭱ ⭳ ⭶ ⭷ ⭸ ⭹ ⇤ ⇥ ⤒ ⤓ ↨ ⤝ ⤞ ⤟ ⤠ ↤ ↦ ↥ ↧ ⬶ ⤅ ⟻ ⟼ ↸ ⇱ ⇲
Wave/Squiggle Arrow
⇜ ⇝ ⬳ ⟿ ↜ ↝ ↭ ⬿ ⤳
Stroked Arrows
⇷ ⇸ ⤉ ⤈ ⇹ ⇺ ⇻ ⇞ ⇟ ⇼ ⭺ ⭼ ⭻ ⭽ ⬴ ⤀ ⬵ ⤁ ⬹ ⤔ ⬺ ⤕ ⬻ ⤖ ⬼ ⤗ ⬽ ⤘
Sharp Turn Arrows
⮠ ⮡ ⮢ ⮣ ⮤ ⮥ ⮦ ⮧ ↰ ↱ ↲ ↳ ⬐ ⬎ ⬑ ⬏ ↴ ↵ ⮐ ⮑ ⮒ ⮓
Arrows with Hook/Loop
↩ ↪ ⤣ ⤤ ⤥ ⤦ ⭚ ⭛ ↫ ↬
Special Tail Arrows
⤙ ⤚ ⤛ ⤜ ⥼ ⥽ ⥾ ⥿
Bent Arrows
⭜ ⭝ ⭞ ⭟ ↯ ⭍
Circular Arrows
↶ ↷ ⤾ ⤿ ⤺ ⤻ ⤹ ⤸ ⭯ ⭮ ↺ ↻ ⟲ ⟳ ⥀ ⥁ 🗘 ⮎ ⮌ ⮏ ⮍ ⮔ 🔁 🔂 🔃 🔄 ⤶ ⤷ ⤴ ⤵
Ribbon Arrow
⮰ ⮱ ⮲ ⮳ ⮴ ⮵ ⮶ ⮷
Curved Arrow
➥ ➦ ⮨ ⮩ ⮪ ⮫ ⮬ ⮭ ⮮ ⮯
Shaded/Shadowed
➩ ➪ ➫ ➬ ➭ ➮ ➯ ➱ 🢠 🢡 🢢 🢣 🢤 🢥 🢦 🢧 🢨 🢩 🢪 🢫
Decorative Arrows
⇪ ⮸ ⇫ ⇬ ⇭ ⇮ ⇯ ➳ ➵ ➴ ➶ ➸ ➷ ➹ ➙ ➘ ➚ ➾ ⇰ ➛ ➜ ➔ ➝ ➞ ➟ ➠ ➧ ➨ ➺ ➻ ➼ ➽
Pointers and Triangles
◄ ► ◅ ▻ ◀ ▶ ▲ ▼ ⯇ ⯈ ⯅ ⯆
Arrow Head, Arrow Shaft
🢐 🢒 🢑 🢓 ⌃ ⌄ 🢔 🢖 🢕 🢗 🢜 🢝 🢞 🢟 🢬 🢭 ⮹
Double Head
↞ ↠ ↟ ↡ ⯬ ⯭ ⯮ ⯯
misc
🠴 🠶 🠵 🠷 🢘 🢚 🢙 🢛 🔙 🔚 🔛 🔜 🔝 ↢ ↣ ⇽ ⇾ ⇿ ⭎ ⭏ ⥂ ⥃ ⥄ ⥉ ⥰
Math Arrows
⤼ ⤽ ⥶ ⥸ ⥷ ⭃ ⭀ ⥱ ⭂ ⭈ ⭊ ⥵ ⭁ ⭇ ⭉ ⥲ ⭋ ⭌ ⥳ ⥴ ⥆ ⥅ ⬰ ⇴ ⥈ ⬲ ⟴ ⬾ ⥇ ⥹ ⥻ ⥺ ⭄
[see Unicode Math Symbols ∑ ∫ π² ∞]
Cross Arrows
⤪ ⤨ ⤧ ⤩ ⤭ ⤮ ⤱ ⤲ ⤯ ⤰ ⤫ ⤬
Reference
https://www.mindnow.cn/support/how-to/138
https://blog.csdn.net/qq_24059779/article/details/84339167